Gestra

Conductivity Controller LRR 1-52 Conductivity Controller LRR 1-53 Operating & Display Unit URB 50

LRR 1-52 LRR 1-53 URB 50

English

Original Installation Instructions 819225-03

Contents

Important notes

Usage for the intended purpose	5
Glossary	5
Function	7
Safety note	8

Directives and standards

EU Pressure Equipment Directive 2014/68/EU	9
VdTÜV Bulletin "Water Monitoring 100"	9
LV (Low Voltage) Directive and EMC (Electromagnetic Compatibility)	9
ATÈX (Atmosphère Explosible)	9
UL/cUL (CSA) Approval	9
Note on the Declaration of Conformity / Declaration by the Manufacturer CC	9

Technical data

In control cabinet: Installing the conductivity controller

Dimensions LRR 1-52, LRR 1-53	13
Key	13
nstallation in control cabinet	13
Vame plate / marking	14

In control cabinet: Installing the operating & display unit

Dimensions URB 50	15	į
Key	15	į
Installation in control cabinet	15	į
Name plate / marking	15	į

In control cabinet: Wiring the conductivity controller

Wiring diagram for conductivity controller LRR 1-52	16
Wiring diagram for conductivity controller LRR 1-53	17
Key	17

Page

In control cabinet: Wiring the operating & display unit

Back of equipment, position of connector	18
Connection of supply voltage	18
Pin assignment for data line LRR 1-52, LRR 1-53 - URB 50	18
Key	18

In control cabinet: Wiring the conductivity controller / the operating & display unit

Connection of supply voltage	.19 19
Connecting conductivity electrode LRG 12-2, LRG 16-4, LRG 17-1 and LRG 19-1,	
resistance thermometer TRG 5	.19
Connection of conductivity electrode LRG16-9	.19
Connection of conductivity transmitter LRGT 1	.20
Connection of data line for the conductivity controller / operating & display unit	.20
Connecting the potentiometer (for indication of valve positions), connections IN/ OUT / 4-20 mA	.20

In the plant:

Wiring the conductivity electrode / transmitter

Connecting conductivity electrode LRG 12-2, LRG 16-4, LRG 17-1 and LRG 19-1, resistance the	nermome-
ter TRG 5	21
Connection of conductivity electrode LRG16-9	21
Connection of conductivity transmitter LRGT 1	21

Conductivity controller: Factory settings

Conductivity controller LRR 1-52, LRR 1-	53
--	----

Conductivity controller: Changing factory settings

Changing the function and unit	23
Tools	24

Operating & display unit URB 50

User interface	25
Key	25
Switch on supply voltage	25
Explanation of icons	26

Commissioning procedure

Adjusting the MIN/MAX switchpoints and setpoint	
Numberpad	29
Key	29
Conductivity controller LRR 1-52:	
Setting the measuring range, correction factor and temperature compensation	30
Key	30
Conductivity controller LRR 1-53: Setting measuring range	31
Setting the control parameters	32
Additional information on control parameter settings	32
Continuous blowdown valve: Setting the purging pulse and duration	33
Continuous blowdown valve: Calibrating the potentiometer for indication of valve position	33
Key	33
Automatic intermittent blowdown	34

Page

Operation

Manual actuation of continuous blowdown valve	35
Stand-by operation	35
Key	35
Trending	36
Key	36
Testing MIN/MAX alarm, entering date and time	37
Setting up a password and logging in	38
Key	38
Setting up a password and logging in	39
Log out	39
Alarm list	40
Key	40

Error, alarm and warning messages

Indication,	diagnosis and	remedy		41
-------------	---------------	--------	--	----

Further Notes

Action against high frequency interference	42
Decommissioning / replacing the conductivity controller LRR 1-5	42
Decommissioning / replacing the operating & display unit UBB 50	
Disnosal	42
Disposa	

Important notes

Usage for the intended purpose

The functional unit consisting of the operating & display unit URB 50 / conductivity controller LRR 1-52, LRR 1-53 in conjunction with conductivity electrodes LRG 1.-.. and conductivity transmitter LRGT 1.-.. is used as conductivity controller and limiter, for instance in steam boilers, (pressurized) hot-water installations as well as condensate and feedwater tanks. The conductivity controller indicates when the preset MAX or MIN conductivity is reached, opens or closes a continuous blowdown valve and may also control an intermittent blowdown valve.

The conductivity controllers are designed for use with conductivity electrodes and transmitters in the following equipment combinations: Conductivity controller LRR 1-52 together with conductivity electrodes LRG 12-2, LRG 16-4, LRG 16-9, LRG 17-1 and LRG 19-1;

Conductivity controller LRR 1-53 together with conductivity transmitters LRGT 16-1, LRGT 16-2 and LRGT 17-1.

Glossary

Continuous boiler blowdown (top blowdown)

As the boiler water evaporates, the concentration of non-volatile dissolved solids (TDS) left behind in the boiler increases over time as a function of steam consumption. If the TDS (= total dissolved solids) concentration exceeds the limit defined by the boiler manufacturer, foaming and priming occurs as the density of the boiler water increases, resulting in a carry-over of solids with vapour into steam lines and superheaters.

As a consequence, the operational safety is impaired and severe damage to boiler and tubes may occur. To keep the TDS concentration within admissible limits, a certain portion of boiler water must be removed continuously or periodically (by means of a blowdown valve) and fresh make-up water must be added to the boiler feed to compensate for the water lost through blowdown.

Electrical conductivity - here as a result of the TDS content of boiler water - is measured in microSiemens/cm (μ S/cm). However, in some countries ppm (parts per million) is used for conductivity readings. Conversion: 1 μ S/cm = 0.5 ppm.

Intermittent boiler blowdown (bottom blowdown)

During the evaporation process fine sludge deposits settle on heating surfaces and in the lowest part of the steam boiler. Boiler sludge is caused e.g. by oxygen-scavenging agents. The accumulated sludge sediments form a thermally insulating layer and can damage the boiler walls due to excessive heat. To perform a bottom blowdown the intermittent blowdown valve must be opened abruptly. The resulting suction effect occurs only at the moment when the valve is being opened, the opening time should therefore not exceed 3 seconds. Longer blowdown periods will merely waste boiler water.

The timed pulse/interval control of the intermittent blowdown valve optimises sludge removal while minimising loss of boiler water. The interval between the intermittent blowdown pulses can be set between 1 and 200 h (intermittent blowdown interval Ti). The duration T of the intermittent blowdown can be set between 1 and 10 sec. For larger boilers it may be necessary to repeat the intermittent blowdown pulses. The repetition rate can be set between 1 and 10 with a time interval between 1 - 10 seconds (pulse interval Tp).

External intermittent boiler blowdown

Note that simultaneous intermittent blowdown is not allowed If several steam boilers are connected to one single blowdown receiver / mixing cooler. In this case the external intermittent blowdown control unit PRL 50-4 monitors and controls the individual intermittent blowdown operations.

Glossary - continued -

Temperature compensation

The electrical conductivity changes as the temperature falls or rises. To obtain meaningful readings it is therefore necessary that the measurements are based on the reference temperature of 25 °C and that the measured conductivity values are corrected by the temperature coefficient factor tC.

Cell constant and correction factor

The cell constant is a geometric quantity characteristic of the conductivity electrode and is taken into account when calculating the conductivity. However, in the course of time this constant may chance, e. g. due to dirt deposits accumulated on the measuring electrode. Deviations can be compensated by changing the correction factor C LRG.

Purging of the continuous blowdown valve

To prevent the continuous blowdown valve from getting stuck the valve can be rinsed automatically. At regular intervals (purging interval Ti) the continuous blowdown valve is motored into the open position and rinsed (purging time Sd). After purging the valves is motored back into the required control position.

Stand-by operation (conductivity control)

To avoid loss of water, the continuous blowdown control and the programme-controlled intermittent boiler blowdown (if activated) can be de-activated during stand-by operation or when the burner is switched off. An external control command will be triggered and, as a result, the continuous blow-down valve will be closed. During stand-by operation the MIN/MAX limits and the monitoring function remain active.

After the equipment switches back to normal operation, the continuous blowdown valve is motored back into control position. In addition an intermittent blowdown pulse is triggered off (provided that automatic intermittent boiler blowdown has been activated and an interval period and pulse duration has been set).

Important Notes - continued -

Function

The operating & display unit URB 50 and the conductivity controller LRR 1-52, LRR 1-53 form a functional unit featuring the following properties:

Conductivity controller	LRR 1-52	LRR 1-53	
Conductivity monitoring using conductivity electrode LRG 1 and separate resistance thermometer Pt 100 (TRG 5) or conductivity X electrode LRG 16-9 with integrated resistance thermometer.			
Evaluation of temperature-compensated current signal of conductivity transmitter LRGT 1		Х	
3-position stepping controller with proportional-plus-integral control action (PI controller) and control of an electrically actuated continuous blow-down valve	Х	Х	
Indication of MAX conductivity limit (conductivity limiter)	Х	Х	
Indication of MIN conductivity limit or control of intermittent blowdown valve	Х	Х	
Indication of valve position if continuous blowdown valve is provided with a potentiometer	Х	Х	
Actual value output 4-20 mA	Х	Х	
Operating & display unit		URB 50	
Indication of actual value (indicated in percent and as bar graph)			
Indication of valve position (indicated in percent and as bar graph)			
Setting of measuring range			
Indication/adjustment of control parameters and settings			
Trend record			
Indication and listing of errors, alarms and warnings			
Test of MIN / MAX output relays and/or control of intermittent blowdown valve			
Manual/automatic operation			
Password protection		Х	

Important Notes - continued -

Safety note

The equipment must only be installed, wired and commissioned by qualified and competent staff.

Retrofitting and maintenance work must only be performed by qualified staff who - through adequate training - have achieved a recognised level of competence.

Danger

The terminal strips of the equipment are live during operation. This presents the danger of electric shock! Always **cut off power supply** to the equipment before mounting, removing or connecting the terminal strips!

Attention

The name plate specifies the technical features of the equipment. Note that any piece of equipment without its specific name plate must neither be commissioned nor operated.

Note

The conductivity electrodes LRG 12-2, LRG 16-4, LRG 16-9, LRG 17-1 and LRG 19-1 are simple items of electrical equipment as specified in EN 60079-11 section 5.7. According to the European Directive 2014/34/EU the equipment must be equipped with approved Zener barriers if used in potentially explosive areas. Applicable in Ex zones 1, 2 (1999/92/EC).

The equipment does not bear an Ex marking.

Directives and standards

EU Pressure Equipment Directive 2014/68/EU

The conductivity control & monitoring equipment LRG 1.-.., LRGT 1.-.., LRR 1-5.. meets the safety requirements of the Pressure Equipment Directive (PED). The conductivity control & monitoring equipment is EU type approved according to EN 12952/EN 12953. These Directives state, among other things, the requirements made on limiting systems and equipment for steam boiler plants and (pressurised) hotwater installations.

VdTÜV Bulletin "Water Monitoring 100"

The functional unit consisting of the operating & display unit URB 50 / conductivity controller LRR 1-52, LRR 1-53 in conjunction with conductivity electrode LRG 1.-.. and conductivity transmitter LRGT 16-1 is type approved according to VdTÜV Bulletin "Wasserüberwachung (= Water Monitoring) 100". The VdTÜV Bulletin "Water Monitoring 100" states the requirements made on water monitoring equipment.

LV (Low Voltage) Directive and EMC (Electromagnetic Compatibility)

The equipment meets the requirements of the Low Voltage Directive 2014/35/EU and the EMC Directive 2014/30/EU.

ATEX (Atmosphère Explosible)

According to the European Directive 2014/34/EU the equipment must not be used in explosion risk areas.

UL/cUL (CSA) Approval

The equipment meets the requirements of Directives: UL 508 and CSA C22.2 No. 14-13, Standards for Industrial Control Equipment. File E243189.

Note on the Declaration of Conformity / Declaration by the Manufacturer CE

For details on the conformity of our equipment according to the European Directives see our Declaration of Conformity or our Declaration of Manufacturer.

The current Declaration of Conformity / Declaration of Manufacturer are available in the Internet under www.gestra.com/documents or can be requested from us.

Technical data

LRR 1-52, LRR 1-53

Supply voltage

24 VDC +/- 20%

Fuse

external 0.5 A (semi-delay)

Power consumption

5 VA

Reset hysteresis

MAX limit: - 3 % of the adjusted MAX limit, fixed setting

Input/output

Interface for data exchange with operating & display unit URB 50

Inputs

1 volt-free input, 24 VDC, for external command "Control OFF", "Valve CLOSED",

"Intermittent blowdown OFF" (stand by).

1 analogue input for potentiometer 0 - 1000 Ω , two-wire connection (indication of valve position)

Outputs

2 volt-free change-over contacts, 8 A 250 V AC / 30 V DC cos ϕ = 1 (continuous blowdown valve).

2 volt-free change-over contacts, 8 A 250 V AC / 30 V DC cos ϕ = 1,

De-energizing delay: 3 seconds (MIN/MAX alarm)

or

1 volt-free change-over contact, 8 A 250 V AC / 30 V DC cos ϕ = 1,

De-energizing delay: 3 seconds (MAX alarm)

1 volt-free change-over contact, 8 A 250 V AC / 30 V DC cos ϕ = 1 (intermittent blowdown valve)

Provide inductive loads with RC combinations according to manufacturer's specification to ensure interference suppression.

1 analog output 4-20 mA, max. load 500 ohm (actual value)

Indicators and adjustors

1 tri-colour LED indicator (start-up = amber, power ON = green, malfunction = red) 1 code switch with four poles for configuration

Housing

Housing material: base: polycarbonate, black; front: polycarbonate, grey Conductor size: 1 x 4.0 mm² solid per wire or 1 x 2.5 mm² per stranded wire with sleeve to DIN 46228 or 2 x 1.5 mm² per stranded wire with sleeve to DIN 46228 (min. \oslash 0.1 mm) Terminal strips can be detached. Fixing of housing: Mounting clip on supporting rail TH 35, EN 60715

Electrical safety

Pollution degree 2 for installation in control cabinet with protection IP 54, completely insulated

Protection

Housing: IP 40 to EN 60529 Terminal strip: IP 20 to EN 60529

Weight

approx. 0.5 kg

Technical data - continued -

Only LRR 1-52

Connection of conductivity electrode

1 input for conductivity electrode LRG 1.-.. (cell constant 1 cm⁻¹), 3 poles with screen or 1 input for conductivity electrode LRG 16-9 (cell constant 0.5 cm⁻¹), with integrated resistance thermometer Pt 100, 3 poles with screen

Measuring voltage

 $0.8 V_{SS}$, pulse duty factor tv = 0.5, frequency 20-10000 Hz.

Measuring range

0.5 to 10,000 µS/cm at 25 °C or 0.25 to 5,000 ppm at 25 °C.

Only LRR 1-53

Connection of conductivity transmitter

1 analogue input 4-20 mA, e. g. for conductivity transmitter LRGT 1.-.., 2 poles with screen.

Measuring range

0.5 - 20, - 100, - 200, - 500, - 1000, - 2000, - 6000, - 12000 μS/cm adjustable, 100 - 3000, - 5000, - 7000, - 10000 μS/cm adjustable

LRR 1-52, LRR 1-53

Ambient temperature

when system is switched on: 0 $^{\circ}$ 55 $^{\circ}$ C, during operation: -10 ... 55 $^{\circ}$ C

Transport temperature

 $-20 \dots +80$ °C (<100 hours), defrosting time of the de-energized equipment before it can be put into operation: 24 hours.

Storage temperature

 $-20 \dots +70$ °C, defrosting time of the de-energized equipment before it can be put into operation: 24 hours.

Relative humidity

max. 95%, no moisture condensation

Approvals:

TÜV certificate	VdTÜV Bulletin "Wasserüberwachung 100" (= Water Monitoring 100): Requirements made on water level monitoring equipment		
	Type approval no. TÜV · WÜL · XX-017 (see name plate).		
UL/cUL (CSA) Approval	UL 508 and CSA C22.2 No. 14-13, Standards for Industrial Control Equipment. File E243189.		

Technical data - continued -

URB 50

Supply voltage 24 VDC +/- 20%

Fuse internal automatic

Power consumption 8 VA

Input / output Interface for data exchange

Graphic user interface Analogue resistive touch screen, resolution 480 x 271 pixels, illuminated

Dimensions

Front panel: 147x107 mm Panel cut-out: 136x96 mm Depth: 56 + 4 mm

Electrical connection

1 connector with 3 poles, 1 D-SUB connector with 9 poles.

Protection

Front panel: IP 65 to EN 60529 Back: IP 20 to EN 60529

Weight

approx. 1.0 kg

Ambient temperature

when system is switched on: 0 ° 55 °C, during operation: -10 ... 55 °C

Transport temperature

-20 ... +80 °C (<100 hours), defrosting time of the de-energized equipment before it can be put into operation: 24 hours.

Storage temperature

-20 ... +70 °C, defrosting time of the de-energized equipment before it can be put into operation: 24 hours.

Relative humidity

5 - 85 %, no moisture condensation

Scope of supply

LRR 1-52

1 Conductivity controller LRR 1-52 1 Installation manual

LRR 1-53

1 Conductivity controller LRR 1-53 1 Installation manual

URB 50

1 Operating & display unit URB 50

1 Data line L = 5m

In control cabinet: Installing the conductivity controller

Dimensions LRR 1-52, LRR 1-53

The conductivity controller LRR 1-52, LRR 1-53 is clipped onto the support rail type TH 35, EN 60715 in the control cabinet. Fig. 1 ④

In control cabinet: Mounting the conductivity controller - continued -

Name plate / marking

In control cabinet: Installing the operating & display unit

In control cabinet: Wiring the conductivity controller

Fig. 7

In control cabinet: Wiring the conductivity controller - continued -

Wiring diagram for conductivity controller LRR 1-53 (+)(--) MIN **CLOSED OPEN** MAX 20 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 8 8 6 ര 10 10 11 (3 (23) 8 (3) (3) (3) 2 9 10 11 12 13 14 15 🚯 8 3 M 0.5 A (semidelay) (-) (+) (-) (+) (L) (-) (+) <u>i</u> (H)19 ß 15 18

Fig. 8

Key 15 Data line for operating & display unit URB 50 8 Fixing screws for terminal strip 9 MIN output contact, de-energizing delay **16** Conductivity electrode LRG 1.-.. (Terminal 3 sec. or actuation of intermittent blowdown 13/14: A resistance thermometer can be valve connected) **10** Output contact for actuation of continuous **17** Conductivity electrode LRG 16-9 with integrated blowdown valve resistance thermometer **1** MAX output contact, de-energizing delay: 18 Conductivity transmitter LRGT 1.-.., 3 sec. 4-20 mA, with earthing point 12 Connection of supply voltage 24 V DC with (19) Central earthing point (CEP) in control cabinet fuse 0.5 A (semi-delay), provided on site Stand-by input, 24 VDC, for external command 13 Actual value output 4-20 mA 20 "Control OFF", "Valve CLOSED", "Intermittent 14 Indication of valve position, blowdown OFF" potentiometer 0 - 1000 Ω

In control cabinet: Wiring the operating & display unit

Back of equipment, position of connector

Fig. 9

Connection of supply voltage

Fig. 10

Pin assignment for data line LRR 1-52, LRR 1-53 - URB 50

PIN 2	Data_L	
PIN 7	Data_H	

Fig. 11

Key

- 2 D-SUB connector with 9 poles for data line
- 22 Connector with 3 poles for supply voltage connection 24 V DC
- 23 Connection for supply voltage 24 V DC, pin assignment

In control cabinet: Wiring the conductivity controller / the operating & display unit

Connection of supply voltage

Each conductivity controller and operating unit is supplied with 24 V DC and provided with an internal (URB) or external (LRR 1-5.., M 0.5A) fuse. The equipment is separately supplied with 24 V DC and fused with an external semi-delay fuse 0.5 A. Please use a safety power supply unit with safe electrical isolation.

The power supply unit must be electrically isolated from dangerous contact voltages and must meet at least the requirements on double or reinforced isolation according to one of the following standards: DIN EN 50178, DIN EN 61010-1, DIN EN 60730-1 or DIN EN 60950.

After switching on the supply voltage and start-up of the equipment the LED of the conductivity controller LRR 1-52, LRR 1-53 lights up green.

Connecting output contacts

Wire the upper terminal strip ① (terminals 16-27) according to the desired switching functions. Provide an external slow-blow fuse 2.5 A for the output contacts.

When switching off inductive loads, voltage spikes are produced that may impair the operation of control and measuring systems. Connected inductive loads must be provided with suppressors such as RC combinations as specified by the manufacturer.

When used as conductivity limiter the conductivity controller LRR 1-52, LRR 1-53 does not interlock automatically when the readings exceed the MAX limit.

If an interlock function is required for the installation it must be provided in the follow-up circuitry (safety circuit). The circuitry must meet the requirements of the EN 50156.

Connecting conductivity electrode LRG 12-2, LRG 16-4, LRG 17-1 and LRG 19-1, resistance thermometer TRG 5-..

To connect the equipment use screened multi-core control cable with a min. conductor size 0.5 mm², e.g. LiYCY 4 \times 0.5 mm² .

Wire terminal strip in accordance with the wiring diagram. Fig. 7

Connect the screen only once to the central earthing point (CEP) in the control cabinet.

Make sure that connecting cables leading to the equipment are segregated and run separately from power cables.

Connection of conductivity electrode LRG16-9

The conductivity electrode LRG 16-9 is equipped with a sensor plug-in connection type M 12, with 5 poles, A-coded, pin assignment see **Fig. 7.** For connecting the equipment control cable assemblies (with male and female connectors) of various lengths are available as add-on equipment.

To connect the conductivity controller LRR 1-52 remove the male connector and wire the terminal strip according to the wiring diagram. Fig. 7

Connect the screen only once to the central earthing point (CEP) in the control cabinet.

If you do not use the prefabricated control cable assembly, use screened five-core control cable, e.g. LiYCY 5 x 0.5 mm², for connecting the equipment. In addition, connect at the electrode end a screened female connector to the control cable.

Make sure that connecting cables leading to the equipment are segregated and run separately from power cables.

In control cabinet: Wiring the conductivity controller / the operating & display unit - continued -

Connection of conductivity transmitter LRGT 1.-..

To connect the equipment use screened multi-core control cable with a min. conductor size 0.5 mm², e. g. LiYCY 4 x 0.5 mm², max. length: 100 m.

Wire terminal strip in accordance with the wiring diagram. **Fig. 8** Wire screen in accordance with the wiring diagram.

Make sure that connecting cables leading to the equipment are segregated and run separately from power cables.

Connection of data line for the conductivity controller / operating & display unit

For connecting the equipment preconfigured control cable assemblies (with female connector) are available as add-on equipment. Wire terminal strip in accordance with wiring diagram. **Fig. 7, 8**

If you do not use the above-mentioned control cable assembly, use screened multi-core control cable, e. g. LiYCY 2 x 0.25 mm², min. conductor size 0.25 mm², max. length 30 m, for connecting the equipment.

Wire the terminal strips according to the wiring diagram **Fig. 7, 8.** Wire the 9-pole D-SUB connector according to **Fig. 11.**

Connect the earthing point of the housing (URB 50) to the central earthing point in the control cabinet.

Connect the screen **only once** to the central earthing point **(CEP)** in the control cabinet. Make sure that connecting cables leading to the equipment are segregated and run separately from power cables.

Connecting the potentiometer (for indication of valve positions), connections IN ../ OUT / 4-20 mA

For the connection use screened multi-core control cable with a min. conductor size 0.5 mm², e. g. LiYCY 2 x 0.5 mm², max. length 100 m.

Please observe the max. load of 500 ohm for the outputs.

Wire terminal strip in accordance with the wiring diagram. Fig. 7, 8

Connect the screen **only once** to the central earthing point (CEP) in the control cabinet. Make sure that connecting cables are segregated and run separately from power cables.

Attention

Do not use unused terminals as support point terminals.

In the plant: Wiring the conductivity electrode / transmitter

Connecting conductivity electrode LRG 12-2, LRG 16-4, LRG 17-1 and LRG 19-1, resistance thermometer TRG 5-..

To connect the equipment use screened multi-core control cable with a min. conductor size 0.5 mm^2 , e.g. LiYCY 4 x 0.5 mm^2 . Wire terminal strip in accordance with the wiring diagram. **Fig. 7.** Connect the screen only once to the central earthing point (CEP) in the control cabinet.

Max. cable length between conductivity electrode / resistance thermometer and conductivity controller: 30 m, with conductivities from 1 to 10 μ S/cm: max. 10 m.

Make sure that connecting cables leading to the equipment are segregated and run separately from power cables.

Connection of conductivity electrode LRG16-9

The conductivity electrode LRG 16-9 is equipped with a sensor plug-in connection type M 12, with 5 poles, A-coded, pin assignment see **Fig. 7.** For connecting the equipment control cable assemblies (with male and female connectors) of various lengths are available as add-on equipment.

Note that the recommended control cable is not UV-resistant and, if installed outdoors, must be protected by a UV-resistant plastic tube or cable duct.

To connect the conductivity controller LRR 1-52, LRR 1-53 remove the connector and wire the terminal strip according to the wiring diagram. **Fig. 7.** Connect the screen only once to the central earthing point (CEP) in the control cabinet.

If you do not use the prefabricated control cable assembly, use screened five-core control cable, e.g. LiYCY 5 x 0.5 mm², for connecting the equipment. In addition, connect at the electrode end a screened female connector to the control cable.

Max. cable length between conductivity electrode and controller: 30 m, with conductivities from 1 to 10 μ S/cm: max. 10 m.

Make sure that connecting cables leading to the equipment are segregated and run separately from power cables.

Connection of conductivity transmitter LRGT 1.-..

To connect the equipment use screened multi-core control cable with a min. conductor size 0.5 mm², e. g. LiYCY 4 x 0.5 mm², max. length: 100 m.

Wire terminal strip in accordance with the wiring diagram. **Fig. 8** Wire screen in accordance with the wiring diagram.

Make sure that connecting cables leading to the equipment are segregated and run separately from power cables.

Attention

- To commission the equipment please refer to the installation & operating manuals for LRG 12-2, LRG 16-4, LRG 16-9, LRG 17-1, LRG 19-1, TRG 5-.. and LRGT 1.-..
- Make sure that connecting cables leading to the equipment are segregated and run separately from power cables.
- Check the connection of the screen to the central earthing point (CEP) in the control cabinet.
- The conductivity transmitter must be separately connected to its own voltage supply.

Conductivity controller: Factory settings

Conductivity controller LRR 1-52, LRR 1-53

Conductivity controller LRR 1-52

- Measuring range = 0.5 to 10000 μ S/cm
- MAX switchpoint = 6000 µS/cm
- MIN switchpoint = 500 µS/cm
- Reset hysteresis: MAX limit – 3 % (fixed)
- Setpoint SP = 3000 µS/cm
- Proportional band Pb = + / 20 % of the setpoint
- Integral time Ti = 0 s
- Dead band = +/-5 % of the setpoint
- Valve travel time tt = 360 s
- Correction factor C LRG = 1 cm⁻¹
- Temperature compensation deactivated
- Temperature coefficient = 2.1 % / °C
- Purging pulse Ti = 0 h
- Purging duration Sd = 180 s (valve opens 180 sec. and closes 180 sec.)

If an intermittent blowdown valve is controlled

- Intermittent blowdown interval Ti = 24 h
- Duration of intermittent blowdown T = 3 s
- Repetition rate = 1
- Pulse interval Tp = 2 s
- Code switch S 1 OFF, S 2 ON, S 3 OFF, S 4 OFF

Conductivity controller LRR 1-53

- Measuring range = 0.5 to 6000 µS/cm
- MAX switchpoint = 6000 µS/cm
- MIN switchpoint = 500 µS/cm
- Reset hysteresis: MAX limit – 3 % (fixed)
- Setpoint SP = 3000 µS/cm
- Proportional band Pb = + / 20 % of the setpoint
- Integral time Ti = 0 s
- Dead band = +/-5 % of the setpoint
- Valve travel time tt = 360 s
- Correction factor C LRG = 1 cm⁻¹
- Temperature compensation deactivated
- Temperature coefficient = 2.1 % / °C
- Purging pulse Ti = 0 h
- Purging duration Sd = 180 s (valve opens 180 sec. and closes 180 sec.)

If an intermittent blowdown valve is controlled

- Intermittent blowdown interval Ti = 24 h
- Duration of intermittent blowdown T = 3 s
- Repetition rate = 1
- Pulse interval Tp = 2 s
- Code switch @:

S 1 OFF, S 2 ON, S 3 ON, S 4 OFF

Conductivity controller: Changing factory settings

Danger

The upper terminal strip **1** of the equipment is live during operation. This presents the danger of electric shock!

Always cut off power supply to the equipment before mounting, removing or connecting the terminal strips!

Changing the function and unit

The input and the function are determined by the code switch **2** setting. To change the code switch setting proceed as follows:

- Cut off supply voltage.
- Lower terminal strip: Unscrew the left and right fixing screws. Fig. 7, 8
- Remove terminal strip.

Fig. 12

After the new code switch settings have been established as new defaults:

- Attach lower terminal strip and fasten fixing screws.
- Apply supply voltage. Equipment is restarted.

Conductivity controller: Changing factory settings - continued -

Changing the function and unit - continued -

If you want to change the function or the unit, set the switches S1 and S4 of the code switch **2** as indicated in the following table **Fig. 13**.

Code switch 🕸	ON 1 2 3 4 Toggle switch, white LRR 1-52	ON 1 2 3 4 Toggle switch, LRR 1-53	white
Conductivity controll	er LRR 1-52, LRR 1-53	S 1	S 4
Output contacts 16, contacts	It OFF		
Output contacts 16, intermittent blowdov	an ON		
Electrical conductivit		OFF	
Electrical conductivi		ON	

Fig. 13

grey = factory setting

Attention

Do not change the code switch @ settings of S2 and S3.

Tools

- Screwdriver, size 3.5 x 100 mm, completely insulated according to VDE 0680-1.
- Screwdriver, size 2 x 100 mm, completely insulated according to VDE 0680-1.

Operating & display unit URB 50

User interface

Key	
25	Status bar
26	Display field
27	Input field
28	Button bar

Switch on supply voltage

Switch on the supply voltage for the conductivity controller LRR 1-5.. and for the operating & display unit URB 50. The LED of the conductivity controller first turns amber and then green. The operating & display unit shows the start window.

Important notes

After approx. 2 minutes of user inactivity the display brightness automatically dims. If you call up another screen display from the start window and you do not make an entry, the system automatically returns to the start window after approx. 5 minutes (time out).

Operating & display unit URB 50 - continued -

Explanation of icons

lcon	Description	lcon	Description
	MAX switchpoint	*	Setpoint
	MIN switchpoint		Conductivity reading
M	Position of the continuous blowdown valve	Standby	Stand-by input active
	Continuous blowdown valve is motored into OPEN position	Y	Continuous blowdown valve is moto- red into CLOSED position
T	System switches to manual operating mode or to trigger off an intermittent blowdown pulse	Ü	System switches to automatic opera- ting mode
	Go to parameter setting window for conductivity electrode	LRGT	Go to parameter setting window for conductivity transmitter
	Enable temperature compensation	0,5 - 6000 µS/cm	Set up measuring range for LRGT: 4-20 mA = 0.5 - 6,000 μS/cm.
X	Disable temperature compensation		
	Temperature coefficient, adjustable between 0.0 - 3 %/°C in increments of 0.1	C-LRG	Correction factor, adjustable between 0.05 and 5,000 in increments of 0.001
Η	Go to parameter setting window for continuous blowdown valve	100%	Calibration of valve OPEN (indication of valve position via potentiometer)
0%	Calibration of valve CLOSED (indicati- on of valve position via potentiometer)	AA	Activate purging pulse for continuous blowdown valve
Ti	Purging pulse for continuous blow- down valve, adjustable between 0 and 24 hrs in steps of 1 h.		De-activate purging pulse for conti- nuous blowdown valve
₽₽	Indication is flashing while continuous blowdown valve is being purged		
يطة,	Go to parameter setting window for controller	Pb	Proportional band, adjustable between 10 and 150 %
Ti	Integral action time, adjustable between 0 - 120 sec. in increments of 1 sec.		Neutral zone (dead band), adjustable between 0 and $+/-$ 20%, based on the setpoint, adjustable in increments of 1 %.
tt	Valve travel time, adjustable between 10 - 600 sec. in increments of 1 sec.		

Operating & display unit URB 50 - continued -

Explanation of icons - continued -

lcon	Description	lcon	Description
Ċ	Automatic intermittent blowdown	Ti	Interval for intermittent blowdown, adjustable between 1 and 200 hrs in steps of 1 h.
T	Pulse for intermittent blowdown, adjustable between 1 - 10 sec. in steps of 1 sec.	_1 2 3 n	Number of intermittent blowdown pulses, adjustable between 1 and 10 in steps of 1.
- тр	Time between intermittent blowdown pulses (if $>$ 1), adjustable between 1 - 10 sec. in steps of 1 sec.	int / ext	Toggle command: Intermittent boiler blowdown internal/external Password protected
INT	Activate internal intermittent blow- down	EXT	Activate external intermittent blowdown
*	Go to trend log window.	••	Move trend log window 1 hr forward
••	Move trend log window 1 hr backwards	0	Zoom out trend log curve (increases time)
i	Get information	Ð	Zoom in trend log curve (decreases time)
֎	Log in	0	Log out
25-27	Relay test of MAX switchpoint	16 18	Relay test of MIN switchpoint
3	Logged in	0	Logged out
*,	Enter new password	*	New password
9/#	Deactivate password handling	O"	Password
\checkmark	Confirm password	IJ	Scroll back
	Hand slider for control valve		Time and date setting

Operating & display unit URB 50 - continued -

Explanation of icons - continued -

lcon	Description	lcon	Description
\wedge	Alarm message / Go to alarm list		Go to alarm list
	Alarm message received		Alarm message gone
#1	Go to first line in alarm list	Ŧ	Scroll down alarm list
	Go to next active alarm		Scroll up alarm list

Commissioning procedure

Adjusting the MIN/MAX switchpoints and setpoint

Press the green button for each switchpoint or the setpoint. Use the on-screen numberpad **Screen display 2** to enter the desired value.

Screen display 1

Numberpad

<u> </u>	Min 23	Max 10000	Old 200
lan inda			200
7	8	9	Esc
4	5	6	-
1	2	3	
0		-	

Screen display 2

The green buttons in the following windows indicate that user input is possible. When you press on these green buttons a numberpad appears and you can enter the desired values and parameter settings.

The bar $\boldsymbol{\textcircled{O}}$ shows the old value and the limit range.

To undo any incorrect data input press the **Backspace** key.

If you do not want to enter data press the **Esc** key. The start window re-appears.

To confirm your data input press the **Enter** key. The start window re-appears again.

KeyImage: Status indication (here: automatic operating mode)Image: Status indication (here: automatic operating mode)Imag

LRG

Conductivity controller LRR 1-52: Setting the measuring range, correction factor and temperature compensation

Press button

to open the parameter setting window for the conductivity electrode.

To establish the measuring range 33 and the

correction factor C LRG 33 press the green button. Use the on-screen numberpad to enter the desired value. Correction factor C LRG: Once the operating

temperature is reached measure the electrical conductivity of a water sample (at 25°C). Set the correction factor (in increments) until the indicated actual value agrees with the reference measured value. As a result the conductivity readings will be adapted to the specific conditions of the installation and any deviations during operation will be compensated for.

Screen display 4

compensation.

to go back to the start window.

Conductivity electrode LRG 1.-.. with separate resistance thermometer and LRG 16-9: To establish the measuring range 33, the temperature coefficient 39 and the correction factor CLRG 39 press the green button. Use the on-screen numberpad to enter the desired value.

Temperature coefficient: Once the operating temperature is reached measure the electrical conductivity of a water sample (at 25°C). Set the temperature coefficient (in increments) until the indicated actual value agrees with the reference measured value.

Correction factor C LRG: During operation the indicated conductivity reading may deviate from the reference value due to e.g. dirt deposits or contamination. Change the correction factor (in increments) until the indicated actual value agrees with the reference measured value

Key

Measuring range in µS/cm

35 Conductivity reading in uS/cm

36 Temperature coefficient %/°C

Commissioning - continued -

Conductivity controller LRR 1-53: Setting measuring range

to open the parameter setting window for the conductivity transmitter.

Note

Note that the conductivity transmitter LRGT 1.-.. must be put into operation first. Refer to the installation & operating manual for LRGT 16-1, LRGT 16-2, LRGT 17-1.

The factory-set measuring range is shown. If required press the button for your required measuring range.

Please take the conductivity transmitter setting into consideration. This setting is decisive.

Screen display 5

Press button

to go back to the start window.

Commissioning - continued -

Setting the control parameters

,طة

Ċ LRR 1-5. 🖈 (7) -Mi 6000 Pb 20.0 % 37 µS/cm % 75 50 38 4500 10 Ti s I 10 % 3000 39 30 tt S 1500-25 S 0 2187 50 2100

For each parameter setting press the green button. Use the on-screen numberpad to enter the desired value.

to go back to the start

window.

to open the parameter setting window for the controller.

Screen display. 6

Press button

Additional information on control parameter settings

Parameter		Deviation	Continuous blowdown valve	
	larger	large remaining deviation	responds slowly	
	smaller	small remaining deviation	responds quickly and may open/closes all the time	
band Pb	Example	Measuring range 0 - 6000 μ S/cm Setpoint SP = 3000 μ S/cm Proportional band Pb = +/- 20% of setpoint = +/- 600 μ S/cm With a measuring range of 0 - 6000 μ S/cm and a setpoint of 3000 μ S/cm the proportional band will be +/- 600 μ S/cm within a range of 2400 to 3600 μ S/cm.		
Integral	larger	slow correction of deviations	responds slowly	
time ti	smaller	fast correction of deviations, control system may tend to overshoot	responds quickly	
Neutral zone (dead band)	larger	time-delayed correction of deviations	will not respond until the deviation exceeds the neutral band	
	smaller	fast correction of deviations		
Valve travel time tt			Adjust the valve travel time specified by the valve manufacturer.	

Commissioning - continued -

Continuous blowdown valve: Setting the purging pulse and duration

Automatic intermittent blowdown

Screen display 9 appears once the output contacts 16, 17, 18 for controlling the intermittent blowdown valve have been configured (Fig.13).

Press the green button next to the symbol

Screen display 10 appears.

Screen display 9

Screen display 10

Press button **EXT** for external control of the

intermittent blowdown valve.

To enter the frequency 🚯 of and the pulse (1) for intermittent blowdown, the number of pulses 4 and the time between blowdown press the green button. Use the on-screen numberpad to enter the desired time setting. The new time settings are accepted after the system is re-started or as soon as the previous intermittent blowdown interval is over.

Press button blowdown pulse.

to go back to the start Press button window, screen display 9.

Screen display 11

The toggle command "internal/external" is not available when you are logged out. Instead of button INT

ext

the field

appears.

to trigger off an intermittent

Press button blowdown pulse. to trigger off an intermittent

to go back to the start Press button window, screen display 9.

Operation

Manual actuation of continuous blowdown valve

Press button

to switch to manual operating mode.

Use the hand slider to change the position of the continuous blowdown valve. The green button indicates the valve opening in %. Or press the green button and enter the desired valve opening in % in the numberpad.

Screen display 12 Switch back to automatic operation.

Stand-by operation

If 24 VDC is present across the stand-by input, automatic control is deactivated, the continuous blowdown valve is motored into the CLOSED position and intermittent boiler blowdown is switched off. Screen display 13 appears. During stand-by operation the MIN/MAX limits and the monitoring function remain active. After the equipment switches back to normal operation, the continuous blowdown valve is motored back into control position. In addition an intermittent blowdown pulse is triggered off (provided that automatic intermittent boiler blowdown has been activated and an interval period and pulse duration has been set).

Screen display 13

Trending

Screen display 1

to open the trend log window.

Screen display 14

Press button

to go back to the start window.

Key

Designation of trend curves

Н

$\overline{\mathbf{N}}$	Conductivity reading, blue curve
Η	Position of control valve, grey curve
¥∥4	Setpoint, purple curve
\land	Alarm message, red curves

48 Test button for MIN alarm

49 Test button for MAX alarm

Testing MIN/MAX alarm, entering date and time

Screen display 1

Press button

to open the information window

	LRR	1-5. İ
	Controller	311178 10
	Interface	311188 67
	Application	311187 68
16 17 17 18 20 21 20 21 20 21	22 23 24 26 26	27 49

Testing MIN alarm

Press and hold down button **(b)** for at least 3 sec. After the de-energizing delay the output contact 17-18 opens and the respective contact icon turns red.

Testing MAX alarm

Press and hold down button ⁽¹⁾ for at least 3 sec. After the de-energizing delay the output contact 26-27 opens and the respective contact icon turns red.

Screen display 15

to open the time/date window

Press the green button and use the on-screen numberpad to enter the day, month, year and hours, minutes and seconds. To change the date and time use the +/- keys.

Press button 15.

to go back to screen display

Screen display 16

Setting up a password and logging in

Screen display 17

To allocate a password press button

The following button(s) appear(s):

Press again button Screen display 18 appears.

Screen display 18

P

Press the

key. Screen display 19 appears.

Press the green button and use the on-screen numberpad to enter "0" during first commissionina.

Press button 1 input.

to confirm the password

Screen display 20 appears.

Screen display 19

Key

50 Log out symbol in status bar

You can allocate a password in order to protect the operating & display unit from unauthorized access and operation.

Setting up a password and logging in LRR 1-5. Ð Press button to go to screen display 21 where you can enter a new password. to deactivate the password handling. to go back to the start window. All buttons and input options are now available Screen display 20 LRR 1-5. * Press the green buttons and use the on-screen numberpad to enter your new password twice. 0000 Press button to confirm the password and 0000 go back to screen display 20. Press button to go back to screen display 20 Screen display 21 Log out

Alarm list

Example:

The MAX switchpoint is exceeded. The warning triangle **(3)** and the change of colour indicate that there is an alarm message.

Press the button with the warning triangle **1** to view the alarm list (Screen display 23).

Screen display 1

Press button

to open the information window

Screen display 22

Press button

go to the alarm list.

			LRR 1-5. 🗕	λ
#	CODE			
1	A.001	14.05. 15:32:46		
2	A.002	14.05. 15:27:23	14.05. 15:27:27	I
3	A.001	14.05. 15:27:23	14.05. 15:27:27	I
4	E.002	14.05. 15:27:22	14.05. 15:27:352	I
5	A.001	14.05. 15:21:52	14.05. 15:22:00	J

The active alarm or malfunction is highlighted in red. Press button			
	to call up the next active message.		
	+	to scroll forward in the alarm list (also possible by means of hand slider).	
#1	to go to the first line.		
	to go back to the start window.		

to go back to the start

Ы

Key

Error, alarm and warning messages

Indication, diagnosis and remedy

Attention

Before carrying out the fault diagnosis please check:

Supply voltage:

Is the equipment supplied with the voltage specified on the name plate?

Wiring:

Is the wiring in accordance with the wiring diagram?

Alarm list / window			
A m	Status / error	Remedy	
~?~	Communication LRR/URB disrupted	Check electrical connection. Switch supply voltage off and on again to re-start the equipment.	
Code			
A.001	MAX switchpoint exceeded		
A.002	Value below MIN switchpoint		
E.005	Conductivity electrode defective, measuring voltage < 0.5 VDC	Check conductivity electrode and, if necessary, replace it. Check electrical connection.	
	Conductivity transmitter defective, measuring current < 4 mA	Check conductivity transmitter and, if necessary, replace it. Check electrical connection.	
E.006	Conductivity electrode defective, measuring voltage > 7 VDC	Check conductivity electrode and, if necessary, replace it. Check electrical connection. Check boiler water.	
	Conductivity transmitter defective, measuring current > 20 mA	Check conductivity transmitter and, if necessary, replace it. Check electrical connection.	
E.101	If continuous blowdown valve is equipped with a potentiometer: Calibration values 0 and 100 % have been reversed.	Re-calibrate the potentiometer in the continuous blowdown valve.	
E.102	Beginning and end of measuring range have been reversed.	Re-adjust the measuring range.	
E.103	MIN switchpoint above MAX switchpoint	Re-adjust the switchpoints.	
In the event of a malfunction (E. xxx) a MIN and MAX alarm will be triggered			
and the continuous blowdown valve closes.			

Attention

Please refer to the installation & operating manuals for LRG 12-2, LRG 16-4, LRG 16-9, LRG 17-1, LRG 19-1, TRG 5-.. and LRGT 1.-.. for further fault-finding and troubleshooting.

Note

If a malfunction occurs in the conductivity controller, MIN and MAX alarms will be triggered and the equipment is restarted.

Should this happen over and over again, replace the equipment with a new one.

Further Notes

Action against high frequency interference

High frequency interference can occur for example as a result of out-of-phase switching operations. Should such interference occur and lead to sporadic failures, we recommend the following actions in order to suppress any interference.

- Provide inductive loads with RC combinations according to manufacturer's specification to ensure interference suppression.
- Make sure that all connecting cables leading to the conductivity electrode or to the conductivity transmitter are segregated and run separately from power cables.
- Increase the distance to sources of interference.
- Check the connection of the screen. Check the screens of the equipment as stipulated in the respective installation & operating manuals. If equipotential bonding currents are to be expected (e. g. in outdoor installations) connect screen only at one end.
- HF interference suppression by means of hinged-shell ferrite rings.

Decommissioning / replacing the conductivity controller LRR 1-5

- Switch off supply voltage and cut off power supply to the equipment.
- Remove the lower and upper terminal strips. Unscrew the left and right fixing screws. Fig. 12
- Release the white fixing slide at the bottom of the equipment and take the equipment off the supporting rail.

Fig. 12

Decommissioning / replacing the operating & display unit URB 50

- Switch off supply voltage and cut off power supply to the equipment.
- Unplug the connector, Flg. 10 and 11.
- Unscrew screws Fig. 5 and remove fixing elements.
- Push the equipment out of the control cabinet panel cut-out.

Disposal

For the disposal of the equipment observe the pertinent legal regulations concerning waste disposal.

If faults occur that are not listed above or cannot be corrected, please contact our service centre or authorized agency in your country.

For your Notes

Gestra[®]

Agencies all over the world: www.gestra.de

GESTRA AG

 Münchener Straße 77

 28215 Bremen

 Germany

 Telefon
 +49 421 3503-0

 Telefax
 +49 421 3503-393

 E-mail
 info@de.gestra.com

 Web
 www.gestra.de