

Application

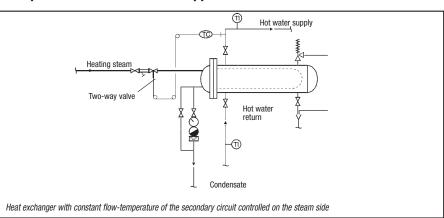
Temperature control in heating and cooling processes in industrial plants, for h.v.a.c services and marine engineering. For liquids, gases, vapours.

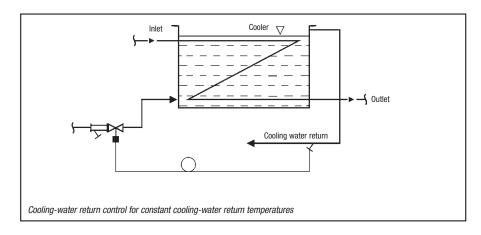
Design

The self-acting temperature controller consists of a valve featuring a thermostat and a sensor. According to the service conditions the controller is optionally equipped with a cooling unit or a sensor pocket.

The temperature sensed by the sensor changes the volume of the measuring liquid in the capillary tube. The resulting pressure acts directly on the actuating piston which, in turn, operates the valve spindle. As the temperature rises, the regulating valve is held in closed position (heating process) or open position (cooling process) until the pre-set release temperature is reached.

When the temperature drops again, a builtin return spring resets the valve to original position. Two-way valves, with single seat or pressure-balanced single/double seat. Double-seated, two-way reverse-acting valves or three-way valves for diverting and mixing applications. Valve components made of gunmetal, cast iron, nodular cast iron or cast steel, with flanged or screwed connections.


Thermostat


The thermostat is firmly attached to the sensor capillary tube. The rod-, spiral- or airduct-type sensors are made of copper or high-alloy stainless steel.

The capillary tube is available in different lengths, made of copper or high-alloy stainless steel.

Valves

Examples of Industrial Process Applications

Dimensions Imi	n] and Weights [kg	i for Valves and	Thermostats

Valve typ	oe		DN	15	20	25	32	40	50	65	80	100	125	150
			G	1/2	3/4	1	11⁄4	1½	2					
M1F			L	130	150	160	180	200	230					
G1F			H ₁	80	85	95	105	110	125					
H1F			H_2	60	65	70	75	85	95					
		M1F/G1F	kg	3.1	4.2	5.5	8.1	9.7	14.7					
	G1	H1F	kg	3.4	4.6	6.1	9.0	10.8	15.5					
M1FBN	L		L	130	150	160	180	200	230	290	310			
G1FBN			Н	101	107	112	122	125	140	154	164			
H1FBN			H ₁	80	85	70	75	85	95	110	115			
	" = "	M1FBN	kg	4	5	6.0	9.0	13.0	16.0	23.0	38.0			
		G1FBN	kg	4	5	6.0	9.0	13.0	16.0	23.0	38.0			
	G1	H1FBN	kg	4	5	6.0	9.0	13.0	16.0	23.0	38.0			
L1S	 		L	85	95									
±			Н	65	67									
I			H_1	20	32									
			kg	0.7	0.8									
L 2 S	<u> </u>		L					129	153					
			Н					118	122					
	₽Ţ₽Ţ		H ₁					68	71					
	=		kg					2.9	3.8					
L2SR	L L		L					129	153					
			Н					65	70					
			H ₁					90	94					
	G1		kg					3.0	4.0					
M2FR	G1 ⊢-		L		150	160	180	200	230	290	310	350	400	400
G2FR	╟ ╋┪		H ₁		63	70	75	85	95	110	155	145	160	180
H2FR			H_2		112	117	151	155	163	180	195	240	260	293
	<u> </u>		kg		5.0	6.5	9.0	11.0	16.0	21.0	35.0	39.0	75.0	77.0

Thermostats K = sensor of copper N = sensor of high alloy S.S.		Type V 2.05		Type V 4.03		Type V 4.05		Type V 4.10		Type '	V 8.09	Type V 8.18	
		K	N	K	N	K	N	K	N	K	N	K	N
Adjusting cylinder Adjusting cylinder	Α	305	305	385	385	385	385	385	385	560	560		560
B B	В	405	405	525	525	525	525	525	525	740	740		740
Rod- and spiral-type sensor with BSP connection	С	210	190	210	190	390	380	490	515	710	745		800
sensor with BSP connection	D	235	170	235	170	235	250	325	325	425	435		810
→ 30 ← → E ← → F ←	- Е	22	22	22	22	22	22	28	25	28	25		34
	F	49	49	49	49	49	49	49	49	49	49		49
	G	3/4	3/4	1	1	1	1	1	1	2	2		2
AAAAAAAAAAA	Н	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"		2"
	_н kg	1.8	1.8	2.4	2.4	2.6	2.6	3.3	3.3	6.3	6.3		7.3
	kg	2.3	2.3	2.9	2.9	3.1	3.1	3.8	3.8	6.3	6.3		7.3

Closing Pressure Ratings for Valves and Sensors

Other transfer of the state of	and the second s	L. A	
Single-seated requiating	y valves with flanged ends and ro	1-type copper sensor with	copper capillary tupe (3 m)

Single-seated regulating valves wit	h flanged	ends an	d rod-ty _l	pe coppe	r senso	or with o	coppe	r capilla	ry tub	e (3 r	n)		
	DN [mm]	15/6	15/9	15/12	15	20	2	5 3	2	40	50	65	80
	k _{vs} value	0.45	0.95	1.7	2.75	5	7.	5 12	2.5	20	30	50	80
Δp_{max} for sensor type	2.05	20	13	9.3	5.3	1.9	0.	9 -	-	-	-		
Fluid: saturated steam	4.05	40	38	24	15	6.7	-	. -	-	-	-		
Type M1F, G1F, H1F	4.10	-	-	-	-	-	4.	1 1.	.9	8.0	-		
	8.09	_	-	-	-	16	10	0 5	.8	3.3	2.3		
Balanced, single-seated regulating val	ves with fla	inged en	ds and ro	d-type co	pper se	nsor wit	th copp	er capil	ary tu	be (3 ı	m)		
	DN				15	20	2	5 3	2	40	50	65	80
	k _{vs} value				4	6.3	10	0 1	6	25	35	58	80
Δp_{max} for sensor type	4.05				16	16	16	6 1	6	9	8	6	4
Fluid: saturated steam	4.10				16	16	10	6 1	6	9	8	6	4
Type M1FBN, G1FBN, H1FBN	8.09				16	16	10	6 1	6	16	16	16	16
	8.18				16	16	10	6 1	6	16	16	16	16
Single-seated regulating valves wit	h screwed	end co	nection	and rod	-type c	opper s	ensor	capillar	y tube	e (3 m	1)		
	BSP	1/2/6	1/2/9	1/2 / 12	1/2	3/4							
	k _{vs} value	0.45	0.95	1.7	2.75	5							
Δp_{max} for sensor type	2.05	16	16	-	6	2.9							
Fluid: saturated steam	4.05	16	16	-	16	9							
Type L 1S	4.10	16	16	-	16	9							
Double-seated regulating valves with s	screwed co	nnection	and rod-	type copp	er sens	or with	copper	capillar	y tube	(3 m)			
	BSP	1/2/6	1/2/9	1/2 / 12	1/2	3/4	1	11	/4	11/2	2		
	k _{vs} value	0.45	0.95	1.7	2.75	5	7.	5 12	2.5	20	30		
Δp_{max} for sensor type	2.05	-	-	-	-	_	-		-	-	_		
Fluid: water < 120 °C Type L 2S	4.10	-	-	-	-	_	-	- -	-	21	14		
Double-seated reverse-acting valve wi	th screwed	connect	ion and r	od-type c	opper s	ensor wi	ith cop	per capi	llary tu	ıbe (3	m)	•	
	BSP	1/2		3/4		1		11/2	1		11/2		2
	k _{vs} value	2.75	5	5		7.5		12.	5		20		30
Δp_{max} for sensor type	2.05	-		-		-		-			-		-
Fluid: water < 120 °C	4.05	-		-		-		-			_		-
Type L2SR	4.10	-		_		_		_		2.7		1.8	
Double-seated reverse-acting valve	with flange	ed ends a	and rod-	type cop	per sen	sor with	copp	er capill	ary tul	be (3	m)	·	
	DN [mm]	20	25	32	40	5	50	65	80		100	125	150
	k _{vs} value	5	7.5	12.5	20	3	30	50	80		125	215	310
Δp_{max} for sensor type	2.05	8.3	8	-	_		-	-	-		-	-	-
Fluid: water < 120 °C	4.05	8.3	8	7	-		-	-	_		-	-	-
Tye M2FR, G2FR, H2FR	4.10	-	-	-	6.6	5 5	i.3	5.8	6.7	,	-	_	-
	8.09	-	-	-	-		-	-	-		12.1	-	-
	8.10	-	-	-	_		-	-	-		12.1	9	7.5

